วันพฤหัสบดีที่ 22 ตุลาคม พ.ศ. 2563

 บทที่ 2 อะตอมและสมบัติของธาตุ

2.1 แบบจำลองอะตอม

 แบบจำลองอะตอมของดอลตัน    
        ในปี พ.ศ. 2346 (ค.ศ. 1803) จอห์น ดอลตัน (John Dalton) นักวิทยาศาสตร์ชาวอังกฤษได้เสนอทฤษฎีอะตอม
เพื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของสารก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสารประกอบ ซึ่งสรุปได้ดังนี้
1.ธาตุประกอบด้วยอนุภาคเล็กๆหลายอนุภาคเรียกอนุภาคเหล่านี้ว่า “อะตอม” ซึ่งแบ่งแยกและทำให้สูญหายไม่ได้
2.อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน แต่จะมีสมบัติ แตกต่างจากอะตอมของธาตุอื่น 
3.สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยา เคมีกันในอัตราส่วนที่เป็นเลขลงตัวน้อยๆ 
จอห์น ดอลตัน ชาวอังกฤษ เสนอทฤษฎีอะตอมของดอลตัน 
- อะตอมเป็นอนุภาคที่เล็กที่สุด แบ่งแยกอีกไม่ได้
- อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน
- อะตอมต้องเกิดจากสารประกอบเกิดจากอะตอมของธาตุตั้งแต่ 2 ชนิดขึ้นไปมารวมตัวกันทางเคมี
ทฤษฎีอะตอมของดอลตันใช้อธิบายลักษณะและสมบัติของอะตอมได้เพียงระดับหนึ่ง แต่ต่อมานักวิทยาศาสตร์ค้นพบข้อมูลบางประการที่ไม่สอดคล้องกับทฤษฎีอะตอมของ ดอลตัน เช่น พบว่าอะตอมของธาตุชนิดเดียวกันอาจมีมวลแตกต่างกันได้ 
ลักษ
ณะแบบจำลองอะตอมของดอลตัน

แบบจะลองอะตอมของทอมสัน
 ในปลายคริสต์ศตวรรษที่ 19 ได้มีการค้นพบรังสีชนิดหนึ่ง ซึ่งเรียกว่า รังสีแคโทด (cathode ray) ที่ได้จากการทดลองของนักวิทยาศาสตร์ชื่อ Julius Plicker ซึ่งใช้หลอดแก้วที่สูบอากาศออก และมีอิเล็กโตรด 2 อันอยู่คนละข้าง (แอโนดเป็นขั้วไฟฟ้าบวกและแคโทดเป็นขั้วไฟฟ้าลบ)ของหลอดแก้ว และต่อไปยังไฟฟ้าที่มีศักย์สูง ทำให้เกิดรังสีขึ้นภายในหลอดแก้ว เรียกว่า รังสีแคโทด


สมบัติของรังสีแคโทด
1.รังสีแคโทดสามารถทำให้ฉากเรืองแสงเกิดเรืองแสงได้
2.เมื่อให้รังสีแคโทดอยู่ระหว่างขั้วไฟฟ้ารังสีแคโทดจะเบนเข้าหาขั้วบวกแสดงว่ารังสีแคโทดประกอบด้วยอนุภาคที่มีประจุไฟฟ้า  เป็นลบซึ่งต่อมาเรียกว่า  อิเล็กตรอน
3.เมื่อให้รังสีแคโทดอยู่ในสนามแม่เหล็กจะเกิดการเบี่ยงเบนออกจากแนวเส้นตรง
4.รังสีแคโทดเดินทางเป็นเส้นตรงจากแคโทดไปยังแอโนดถ้ามีวัตถุทึบแสงมากั้นทางเดินของรังสีก็จะทำให้เกิดเงา

  การค้นพบรังสีแคโทด

        เมื่อปี ค.ศ.1833 ไมเคิล ฟาราเดย์ (Michael Faraday) ได้ทำการศึกษาเกี่ยวกับแยกสลายไฟฟ้า (electrolysis) โดยผ่านเข้ากระแสไฟฟ้าเข้าไปในสารละลายชี้ให้เห็นว่าสารละลายต่างๆ ประกอบด้วยอะตอม เมื่อได้รับกระแสไฟฟ้าอะตอมบางส่วนหลุดออกมาซึ่งเป็นอนุภาคไฟฟ้า ดังนั้นโครงสร้างภายในของอะตอมจะต้องเกี่ยวข้องกับอนุภาคไฟฟ้า ซึ่งต่อมา ทอมสัน  (J.J. Thomson) ได้ใช้หลอดรังสีแคโทด (cathode ray tube) ซึ่งเป็นหลอดแก้วภายในบรรจุแก๊สความดันต่ำ ขั้วอิเล็กโทรดที่ท้าด้วยโลหะเมื่อผ่านกระแสไฟฟ้าที่มีศักย์สูงๆ จะสังเกตว่ามีการไหลของกระแสไฟฟ้าเกิดขึ้นโดยมีทิศทางการไหลจากขั้วแคโทด (ขั้วลบ) และทะลุผ่านขั้วของแอโนด (ขั้วบวก) ไปกระทบกันฉากที่เคลือบด้วยสารเรืองแสงท้าให้เห็นเป็นแสงสว่างเกิดขึ้น เรียกรังสีที่เกิดขึ้นนี้ว่า รังสีแคโทด (cathode ray) 




        นอกจากนี้ทอมสัน ยังพบว่ารังสีแคโทดสามารถเบี่ยงเบนในสนามไฟฟ้าและในสนามแม่เหล็ก โดยลำรังสีนี้จะเบนเข้าหาขั้วไฟฟ้าบวก ทอมสันจึงสรุปว่าล้ารังสีแคโทด เป็นอนุภาคประจุลบ เรียกอนุภาคนี้ว่า อิเล็กตรอน และสามารถคำนวณหาอัตราของประจุต่อมวล (e/m) ของอิเล็กตรอนได้เท่ากับ 1.76×10ยกกำลัง8 คูลอมบ์ต่อกรัม


การค้นพบรังสีบวก
ในปี พ.ศ. 2409 (ค.ศ. 1866)  ออยเกน  โกลด์ชไตน์ได้ทำการทดลองโดยเจาะรูที่ขั้วแคโทดในหลอดรังสีแคโทดพบว่าเมื่อผ่านกระแสไฟฟ้าเข้าไปในหลอดรังสีแคโทดจะมีอนุภาคชนิดหนึ่งเคลื่อนที่เป็นเส้นตรงไปในทิศทางตรงกันข้ามกับการเคลื่อนที่ของรังสีแคโทดผ่านรูของขั้วแคโทดและทำให้ฉากด้านหลังขั้วแคโทดเรืองแสงได้  โกลด์ชไตน์ได้ตั้งชื่อว่า รังสีแคแนล” (canal ray)  หรือ รังสีบวก (positive ray) 



จากผลการทดลอง ทั้งของทอมสันและโกลด์สไตน์ ทำให้ทอมสันได้ข้อมูลเกี่ยวกับอะตอมมากขึ้น จึงได้เสนอแบบจำลองอะตอม ดังนี้ อะตอมมีลักษณะเป็นทรงกลมประกอบด้วยอนุภาคโปรตอนที่มีประจุไฟฟ้าเป็นบวกและอนุภาคอิเล็กตรอนที่มีประจุไฟฟ้าเป็นลบ กระจัดกระจายอย่างสม่ำเสมอในอะตอมอะตอมที่มีสภาพเป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับจำนวนประจุลบ

ลักษณะแบบจำลองอะตอมของดอลตันทอมสัน


 

รอเบิร์ต แอนดรูวส์ มิลลิแกน


มิลลิแกน ได้ทำการทดลองเพื่อหาค่าประจุของอิเล็กตรอนโดยวิธีหยดน้ำมัน ทำได้โดย พ่นน้ำมันเป็นละอองเม็ดเล็ก ๆ ให้ตกลงมาระหว่างแผ่นโลหะ 2 แผ่น แล้วใช้รังสีเอกซ์ไปดึงอิเล็กตรอนออกจากอะตอมของก๊าซในอากาศ แล้วให้อิเล็กตรอนไปเกาะหยดน้ำมัน พบว่า แต่ละหยดน้ำมันมีอิเล็กตรอนมาเกาะจำนวนไม่เท่ากัน นั่นคือ หยดน้ำมันบางหยดมีอิเล็กตรอนเกาะติดเพียงตัวเดียว บางหยดก็มีมากกว่า 1 ตัว หยดน้ำมันจะตกลงมาตามแรงโน้มถ่วงของโลก จากนั้นให้กระแสไฟฟ้าเข้าไปในแผ่นประจุบวกและลบ แผ่นประจุลบซึ่งอยู่ด้านล่างผลักหยดน้ำมันที่มีอิเล็กตรอนมาเกาะจนหยุดนิ่ง ซึ่งดูได้ด้วกล้องจุลทรรศน์(microscope) แสดงว่า แรงโน้มถ่วงของโลกเท่ากับแรงจากสนามไฟฟ้า แล้วคำนวณหาค่าประจุจากผลการทดลองมิลลิแกนคำนวณหาค่าประจุของอิเล็กตรอนได้คือ 1.60 X 10-19 คูลอมบ์ ซึ่งเป็นค่าประจุของอิเล็กตรอน 1 อิเล็กตรอน

จากการทดลองของมิลลิแกน เราทราบค่า              e = 1.60 X 10-19 คูลอมบ ์ 

์จากการทดลองของทอมสัน เราทราบค่า           e/m = 1.76 X 108 คูลอมบ์/กรัม

                                                                      m = 9.11 X 10-28 กรัม

          ดังนั้น เราจะทราบมวลของอิเล็กตรอนเท่ากับ  9.11 X 10-28 กรัม


แบบจะลองอะตอมของรัทเทอร์ฟอร์ด
เออร์เนสต์ รัทเธอร์ฟอร์ด (Ernest Rutherford) ได้ทำการทดลองยิงอนุภาคแอลฟา(นิวเคลียสของอะตอมฮีเลียม ) ไปที่แผ่นโลหะบาง ในปี พ.ศ.2449 และพบว่าอนุภาคนี้ สามารถวิ่งผ่านได้เป็นจำนวนมาก แต่จะมีเพียงส่วนน้อยที่เป็นอนุภาคที่กระเจิง(การที่อนุภาคเบนจากแนวการเคลื่อนที่จากที่เดิมไปยังทิศทางต่างๆกัน ) ไปจากแนวเดิมหรือสะท้อนกลับทางเดิม


จากการทดลองนี้ รัทเธอร์ฟอร์ดจึงได้เสนอแบบจำลองอะตอมว่า " อะตอมมีลักษณะโปร่ง ประกอบด้วยประจุไฟฟ้าบวกที่รวมกันอยู่ที่ศูนย์กลางเรียกว่า นิวเคลียส ซึ่งถือว่าเป็นที่รวมของมวลเกือบทั้งหมดของอะตอม โดยมีอิเล็กตรอนเคลื่อนที่รอบๆนิวเคลียสด้วยระยะห่างจากนิวเคลียสมาก เมื่อเทียบกับขนาดของนิวเคลียสและระหว่างนิวเคลียสกับอิเล็กตรอนเป็นที่ว่างเปล่า"แต่แบบจำลองนี้ยังมีข้อกังขาที่ยังไม่สามารถหาคำตอบได้คือ
1.อิเล็กตรอนที่เคลื่อนที่โดยมีความเร่งจะแผ่คลื่นแม่เหล็กไฟฟ้าออกมา ทำให้พลังงานจลน์ลดลง ทำไมอิเล็กตรอนวิ่งวนรอบนิวเคลียสตามแบบจำลองของรัทเธอร์ฟอร์ด จึงไม่สูญเสียพลังงาน และไปรวมอยู่ที่นิวเคลียส
2. อะตอมที่มีอิเล็กตรอนมากกว่าหนึ่งตัว เมื่อวิ่งวนรอบนิวเคลียสจะจัดการเรียงตัวอย่างไร
3. ประจุบวกที่รวมกันอยู่ในนิวเคลียส จะอยู่กันได้อย่างไร ทั้งๆที่เกิดแรงผลัก

แบบจะลองอะตอมของนีลโบร์
นักวิทยาศาสตร์ได้พยายามศึกษาลักษณะของการจัดอิเล็กตรอนรอบๆ อะตอม โดยแบ่งการศึกษาออกเป็น 2 ส่วน ส่วนแรกเป็นการศึกษษเกี่ยวกับสเปกตรัมของอะตอม ซึ่งทำให้ทราบว่าภายในอะตอมมีการจัดระดับพลังงานเป็นชั้นๆ ในแต่ละชั้นจะมีอิเล็กตรอนบรรจุอยู่ ส่วนที่สองเป็นการศึกษาเกี่ยวกับพลังงานไอโอไนเซชัน เพื่อดูว่าในแต่ละระดับพลังงานจะมีอิเล็กตรอนบรรจุอยู่ได้กี่ตัว
สเปกตรัม หมายถึง อนุกรมของแถบสีหรือเส้นที่ได้จากการผ่านพลังงานรังสีเข้าไปในสเปกโตรสโคป ซึ่งทำให้พลังงานรังสีแยกออกเป็นแถบหรือเป็นเส้น ที่มีความยาวคลื่นต่างๆเรียงลำดับกันไป
นีลส์โบร์   ได้เสนอแบบจำลองอะตอมขึ้นมา สรุปได้ดังนี้
1 . อิเล็กตรอนจะเคลื่อนที่รอบนิวเคลียสเป็นชั้นๆ ตามระดับพลังงาน  และแต่ละชั้นจะมีพลังงานเป็นค่าเฉพาะตัว
2. อิเล็กตรอนที่อยู่ใกล้นิวเคลียสมากที่สุดจะเรียกว่าระดับพลังงานต่ำสุดยิ่งอยู่ห่างจากนิวเคลียสมากขึ้น   ระดับพลังงานจะยิ่งสูงขึ้น
3. อิเล็กตรอนที่อยู่ใกล้นิวเคลียสมากที่สุดจะเรียกระดับพลังงาน  n =  1   ระดับพลังงานถัดไปเรียกระดับพลังงาน  n =2, n = 3,… ตามลำดับ   หรือเรียกเป็นชั้น   K , L , M , N  ,O ,  P , Q ….
ลักษณะแบบจำลองอะตอมของนีลโบร์

คลื่นแม่เหล็กไฟฟ้า

แสง คือ คลื่นแม่เหล็กไฟฟ้า (Electromagnetic waves เรียกย่อๆ ว่า EM) ซึ่งประกอบด้วย สนามแม่เหล็กและสนามไฟฟ้าเคลื่อนที่ทำมุมตั้งฉากกันระยะทางระหว่างยอดคลื่นหนึ่งถึงยอดคลื่นถัดไปเรียกว่า ความยาวคลื่น (Wavelength)  


 แสงที่ตามองเห็น (Visible light) เป็นส่วนหนึ่งของคลื่นแม่เหล็กไฟฟ้า ในช่วงคลื่น 400 – 700 นาโนเมตร (1 nm = 10-9 m หรือ 1/พันล้านเมตร) หากนำแท่งแก้วปริซึมมาหักเหแสงอาทิตย์ เราจะเห็นว่าแสงสีขาวถูกหักเหออกเป็นสีม่วง คราม น้ำเงิน เขียว เหลือง แสด แดง คล้ายกับสีของรุ้งกินน้ำ เรียกว่า “สเปกตรัม” (Spectrum) แสงแต่ละสีมีความยาวคลื่นแตกต่างกัน สีม่วงมีความยาวคลื่นสั้นที่สุด (400 nm) สีแดงมีความยาวคลื่นมากที่สุด นอกจากแสงที่ตามองเห็นแล้วยังมีคลื่นแม่เหล็กไฟฟ้าชนิดอื่นๆเรียงตามขนาดความยาวคลื่นจากน้อยไปมาก


 นอกจากนักวิทยาศาสตร์จะแบ่งประเภทของคลื่นแม่เหล็กไฟฟ้าโดยใช้ความยาวคลื่นเป็นตัวกำหนดแล้ว แต่บางครั้งในวงการวิทยุโทรคมนาคม เรานิยมใช้ความถี่ของคลื่นเป็นตัวกำหนด เนื่องจากคลื่นแม่เหล็กไฟฟ้าทุกประเภทเดินทางโดยไม่ต้องใช้ตัวกลางด้วยความเร็วคงที่  300,000,000 เมตร/วินาที  เราสามารถคำนวณหาค่าความถี่ได้โดยใช้สูตร 
                
                         λ = c / f 
        ความยาวคลื่น = ความเร็วแสง / ความถี่ 
        ความยาวคลื่น (λ) = ระยะห่างระหว่างยอดคลื่น มีหน่วยเป็นเมตร (m) 
        ความถี่ (f) = จำนวนคลื่นที่เคลื่อนที่ผ่านจุดที่กำหนด ในระยะเวลา 1 วินาที มีหน่วยเป็นเฮิรทซ์ (Hz) 
        ความเร็วแสง (c) = 300,000,000 เมตร/วินาที (m/s)

แบบจำลองอะตอมของกลุ่มหมอก

 สรุปแบบจำลองอะตอมแบบกลุ่มหมอกแบบจำลองนี้เชื่อว่า
     1. อิเล็กตรอนไม่ได้เคลื่อนที่เป็นวงกลม แต่เคลื่อนที่ไปรอบๆนิวเคลียส
         เป็นรูปทรงต่างๆตามระดับพลังงาน
     2. ไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนไ้ด้ เนื่องจากอิเล็กตรอนมีขนาดเล็กมาก
         และเคลื่อนที่รวดเร็วตลอดเวลาไปทั่วทั้งอะตอม
     3. อะตอมประกอบด้วยกลุ่มหมอกของอิเล็กตรอนรอบนิวเคลียส บริเวณที่มีหมอกทึบ
         แสดงว่ามีโอกาสพบอิเล็กตรอนได้มากกว่าบริเวณที่มีหมอกจาง ดังรูปที่แสดงไว้

ลักษณะแบบจำลองอะตอมของกลุ่มหมอก

2.3อนุภาคในอะติมและไอโซโทป

 อนุภาคในอะตอม
             อะตอมประกอบด้วยอนุภาคมูลฐานที่สำคัญ 3 อนุภาค ได้แก่โปรตอน  นิวตรอน และอิเล็กตรอนอนุภาคขนาดเล็กคือโปรตอน, นิวตรอน และอิเล็กตรอน มีคุณสมบัติต่างกันดังตาราง

 


  จากตารางอะตอมที่เป็นกลางทางไฟฟ้าจะมีประจุบวกเท่ากับประจุลบ แสดงว่าในอะตอมมีจำนวนโปรตอนเท่ากับจำนวนอิเล็กตรอนซึ่งในอะตอมจะมีโปรตอนจำนวนเท่ากับ “เลขอะตอม”    จำนวนโปรตอน = จำนวนอิเล็กตรอน โปรตอนกับนิวตรอนเป็นอนุภาคที่มีน้ำหนักมากเมื่อเทียบกับอิเล็กตรอน ดังนั้นมวลของอะตอมก็คือจำนวนโปรตอนรวมกับจำนวนนิวตรอน นั่นคือ “เลขมวล” เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน

  โปรตอน
        อนุภาคชนิดนี้เป็นอนุภาคที่ถูกตรึงแน่นอยู่ในนิวเคลียส (Neucleus)มีอนุภาคเป็นบวกจำนวนโปรตอนใน อะตอมของธาตุเรียกว่า อะตอมมิค นัมเบอร์ ถ้าธาตุใดมีอะตอมมิค นัมเบอร์ เท่ากันเรียกธาตุเหล่านี้ว่าเป็นไอโซโทป ซึ่งกันและกันกล่าวคือ เป็นธาตุที่มีจำนวนโปรตอนเท่ากัน แต่มีจำนวนนิวตรอนต่างกัน

  นิวตรอน

อนุภาคชนิดนี้เป็นอนุภาคที่ถูกตรึงแน่นอยู่ในนิวเคลียสรวมกับโปรตอนมีน้ำหนักมากกว่าโปรตอนเล็กน้อยและมีคุณสมบัติเป็นกลางทางไฟฟ้า ผลรวมระหว่างโปรตอนและนิวตรอนใน 1 อะตอมของธาตุ เราเรียกว่า อะตอมมิค แมส หรือแมส นัมเบอร์ ถ้าธาตุใดมีแมส นัมเบอร์ เท่ากันแต่อะตอมมิค นัมเบอร์ ไม่เท่ากันเรา เรียกธาตุเหล่านี้ว่าเป็นไอโซบาร์ซึ่งกันและกัน

  อิเล็กตรอน
อนุภาคชนิดนี้มีคุณสมบัติทางไฟฟ้าเป็นประจุลบ วิ่งอยู่รอบ ๆ นิวเคลียสของอะตอมของธาตุด้วยความเร็วสูงในวงโคจร ที่เฉพาะของมัน เป็นอนุภาคที่มีน้ำหนักน้อย หนักประมาณ เท่าของน้ำหนักของโปรตอนอิเล็กตรอนจะได้รับแรงดึงดูดจากโปรตอนในนิวเคลียสถ้าอิเล็กตรอนเหล่านั้นได้รับพลังงานเพิ่มมันอาจจะ กระโดดออกไปยังเซลล์ต่อไปได้ อิเล็กตรอนในเซลล์รอบนอกสุดมีบทบาทสำคัญมากทั้งในด้านคุณสมบัติทางฟิสิกส์และเคมี โดยเฉพาะในด้านไฟฟ้า อิเล็กตรอนในเซลล์นี้เรียกว่า เวเลนซ์อิเล็กตรอน ถ้าอิเล็กตรอนในเซลล์นี้ได้รับพลังงานเพิ่มมันจะกระโดดหายไปจากอะตอมของธาตุ ทำให้อะตอมมีลักษณะพร่องอิเล็กตรอนจึงมี ีสภาพทางไฟฟ้าเป็นบวก ในทางตรงกันข้ามถ้ามันสูญเสียพลังงาน มันจะ ได้รับอิเล็กตรอนเพิ่มทำให้มีสภาพ ้ทางไฟฟ้าเป็นลบ ดังนั้นอิเล็กตรอนเท่านั้นที่เคลื่อนที่ได้ จึงทำให้เกิดการไหลของกระแสไฟฟ้าโดยปกติสารที่เป็นกลางทางไฟฟ้าจะมีโปรตอนและอิเล็กตรอนเท่ากัน สารใดสูญเสียอิเล็กตรอนจะมี คุณสมบัติทางไฟฟ้าเป็นบวก สารใดที่รับอิเล็กตรอนเพิ่มจะมีคุณสมบัติทางไฟฟ้าเป็นลบ
  สรุป
    อะตอมที่เป็นกลางทางไฟฟ้าจะมีประจุบวกเท่ากับประจุลบ แสดงว่าในอะตอมมีจำนวนโปรตอนเท่ากับจำนวนอิเล็กตรอนซึ่งในอะตอมจะมีโปรตอนจำนวนเท่ากับ "เลขอะตอม"
                                                      จำนวนโปรตอน = จำนวนอิเล็กตรอน
           โปรตอนกับนิวตรอนเป็นอนุภาคที่มีน้ำหนักมากเมื่อเทียบกับอิเล็กตรอน ดังนั้นมวลของอะตอมก็คือจำนวนโปรตอนรวมกับจำนวนนิวตรอน นั่นคือ "เลขมวล"
                                                       เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน
                เราสามารถเขียนเป็นสัญลักษณ์เพื่อระบุเลขอะตอมและเลขมวลได้ดังนี้

        A แทน เลขมวล 
                         Z แทน เลขอะตอม 
                         X แทน สัญลักษณ์ของธาตุ
          เช่น                                                                       
                         เลขอะตอม = จำนวนโปรตอน = จำนวนอิเล็กตรอน
                                11      จำนวนโปรตอน = จำนวนอิเล็กตรอน
                              เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน
                                   23   =           11         + จำนวนนิวตรอน    
                             จำนวนนิวตรอน = 23 - 11 = 12
          นั่นคือ ธาตุโซเดียมมีจำนวนโปรตอน, อิเล็กตรอนและนิวตรอนเท่ากับ 11, 11, 12 ตามลำดับ

2.3การจัดเรียงอิเล็กตรอนในอะตอม

จำนวนอิเล็กตรอนในแต่ละระดับพลังงาน



   ระดับพลังงานหลักและระดับพลังงานย่อย

     ภายในระดับพลังงานหลักอันเดียวกันจะประกอบด้วยพลังงานย่อยเรียงล้าดับจากพลังงานต่้าไปสูง คือ จาก s ไป p d และ f เช่น 3p สูงกว่า 3s ซึ่งเมื่อนำมาเรียงลำดับกันแล้ว พบว่ามีเฉพาะ 2 ระดับพลังงานแรกคือ n = 1 และ n = 2 เท่านั้น ที่มีพลังงานเรียงลำดับกัน แต่พอขึ้นระดับพลังงาน n = 3 เริ่มมีการซ้อนเกยกันของระดับพลังงานย่อย

    ออร์บิทัล

     จากการศึกษาพบว่ากรณีของอะตอมที่มีหลายอิเล็กตรอนนั้นระดับพลังงานของ 3d จะใกล้กับ 4s มาก และพบว่า ถ้าบรรจุอิเล็กตรอนใน 4s ก่อน 3d พลังงานรวมของอะตอมจะต่ำ และอะตอมจะเสถียรกว่า ดังนั้นในการจัดเรียงอิเล็กตรอนในออร์บิทัลแบบที่เสถียรที่สุด คือการจัดตามระดับพลังงานที่ต่ำที่สุดก่อนทั้งในระดับพลังงานหลักและย่อย ซึ่งวิธีการจัดอิเล็กตรอนสามารถพิจารณาตามลูกศรในรูปที่ 1.8 โดยเรียงลำดับได้เป็น 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p


  หลักการจัดเรียงอิเล็กตรอนในอะตอม

     ในการจัดอิเล็กตรอนอาจเขียนเป็นแผนภาพออร์บิทัลซึ่งแสดงสปินของอิเล็กตรอนด้วย ดังตัวอย่าง C มี z = 6 มีโครงแบบอิเล็กตรอนเป็น 1s2 2s2 2p2 ซึ่งการจัดแสดงสปินของอิเล็กตรอนแสดงในตารางที่ 1.1
             ในการบรรจุอิเล็กตรอนหรือการจัดเรียงอิเล็กตรอนลงในออร์บิทัลจะต้องยึดหลักในการบรรจุอิเล็กตรอนของอะตอมหนึ่งๆ ลงในออร์บิทัลที่เหมาะสมตามหลักดังต่อไปนี้
             1) หลักของเพาลี (Pauli exclusion principle) กล่าวว่า “ไม่มีอิเล็กตรอนคู่หนึ่งคู่ใดในอะตอมที่มีเลขควอนตัมทั้งสี่เหมือนกันทุกประการ” นั่นคืออิเล็กตรอนคู่หนึ่งในออร์บิทัลจะมีค่า n, ℓ, mℓ เหมือนกันได้ แต่ต่างกันที่สปิน
                2) หลักของเอาฟ์บาว (Aufbau principle) มีวิธีการดังนี้
     2.1) สัญลักษณ์วงกลม O,  หรือ _ แทน ออร์บิทัล
           ลูกศร ↑↓ แทน อิเล็กตรอน 1 ตัว ที่สปิน ขึ้น-ลง
           ลูกศร↑↓ เรียกว่า อิเล็กตรอนคู่ (paired electron)
           ลูกศร↑  เรียกว่าอิเล็กตรอนเดี่ยว (single electron)
     2.2) บรรจุอิเล็กตรอนเข้าไปในออร์บิทัลที่มีระดับพลังงานต่ำจนครบจำนวนก่อน ดังรูปที่ 1.1
      3) กฎของฮุนด์ (Hund’s rule) กล่าวว่า “การบรรจุอิเล็กตรอนในออร์บิทัลที่มีระดับพลังงานเท่ากัน (degenerate orbital) จะบรรจุในลักษณะที่ท้าให้มีอิเล็กตรอนเดี่ยวมากที่สุดเท่าที่จะมากได้” ออร์บิทัลที่มีระดับพลังงานมากกว่า 1 เช่น ออรฺบิทัล p และ d เป็นต้น


4) การบรรจุเต็ม (filled configuration) เป็นการบรรจุอิเล็กตรอนในออร์บิทัลที่มีระดับพลังงานเท่ากัน แบบเต็ม ครบ 2 ตัว ส่วนการบรรจุครึ่ง (half- filled configuration) เป็นการบรรจุอิเล็กตรอนลงในออร์บิทัลแบบครึ่งหรือเพียง 1 ตัว เท่านั้น ซึ่งการบรรจุทั้งสองแบบ (ของเวเลนซ์อิเล็กตรอน) จะทำให้มีความเสถียรมากกว่าตัวอย่างการบรรจุเต็ม เช่น


2.4ตารางธาตุและสมบัติของธาตุหมู่หลัก

ตารางธาตุ หมายถึง ตารางที่นักวิทยาศาสตร์สร้างขึ้นมา เพื่อแบ่งธาตุที่มีสมบัติเหมือนกันออกเป็นหมวดหมู่  เพื่อให้ง่ายแก่การศึกษา  โดยแบ่งธาตุทั้งหมดออกเป็นหมู่และคาบ 

วิวัฒนาการของการสร้างตารางธาตุ

ปี พ.ศ. 2360 (ค.ศ. 1817)  โยฮันน์ โวล์ฟกัง เดอเบอไรเนอร์ พยายามจัดธาตุเป็นกลุ่มๆละ 3 ธาตุตามสมบัติที่คล้ายคลึงกันเรียกว่า ชุดสาม

พ.ศ. 2407 (ค.ศ. 1864) จอห์น นิวแลนด์ เสนอกฎการจัดธาตุเป็นหมวดหมู่ เรียงธาตุตามมวลอะตอมจากน้อยไปมาก พบว่าธาตุที่ 8 จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ ตารางธาตุมีวิวัฒนาการมาเรื่อยๆจนถึงปัจจุบันนี้


กลุ่มของธาตุในตารางธาตุ

แบ่งได้เป็น 3 กลุ่ม คือ ธาตุโลหะ ธาตุกึ่งโลหะ และธาตุอโลหะ โดยธาตุโลหะจะอยู่ทางซ้ายมือของตารางธาตุ ธาตุกึ่งโลหะจะอยู่บริเวณที่เป็นขั้นบันได และธาตุอโลหะจะอยู่ทางขวามือของตารางธาตุ ยกเว้นไฮโดรเจนที่อยู่ทางซ้ายมือของตาราง

ขนาดอะตอม 

ขนาดไอออน

การบอกขนาดไอออนบอกเป็นค่ารัศมีไอออน

พลังงานไอออไนเซชัน

พลังงานปริมาณน้อยที่สุดที่ทำให้อิเล็กตรอนหลุดจากอะตอมในสถานะแก๊สเรียกว่า พลังงานไอออไนเซชัน (IE) โดยค่า IE แสดงถึงความยากง่ายในการทำให้อะตอมในสถานะแก๊สกลายเป็นไอออนบวก โดย IE มากแสดงว่าทำให้เป็นไอออนบวกได้ยาก

ถ้าเป็นธาตุที่มีหลายอิเล็กตรอนก็จะมีพลังงานไอออไนเซชันหลายค่า พลังงานน้อยที่สุดที่ทำให้อิเล็กตรอนตัวแรกหลุดออกมาจากอะตอมที่อยู่ในสถานะแก๊สเรียกว่า พลังงานไอออไนเซชันลำดับที่หนึ่ง

สัมพรรคภาพอิเล็กตรอน

พลังงานที่ถูกคายออกมาเมื่ออะตอมในสถานะแก๊สได้รับอิเล็กตรอน 1 อิเล็กตรอน เรียกว่า สัมพรรคภาพอิเล็กตรอน (EA) ถ้าค่า EA เป็นบวก หมายความว่าอะตอมคายพลังงานเมื่อได้รับอิเล็กตรอน แสดงว่าอะตอมของธาตุนั้นมีแนวโน้มที่จะรับอิเล็กตรอนได้ดี

อิเล็กโทรเนกาติวิตี

อิเล็กโทรเนกาติวิตี (EN) คือความสามารถในการดึงดูดอิเล็กตรอนคู่ที่ใช้ร่วมกันในโมเลกุลของสาร เมื่อพิจารณาค่า EN ของธาตุในหมู่เดียวกันจะพบว่ามีแนวโน้มเพิ่มขึ้นตามเลขอะตอม

2.5ธาตุแทรนซิชัน

ธาตุแทรนซิชัน  คือ  กลุ่มธาตุที่อยู่ระหว่างหมู่  IIA  กับ  IIIA ซึ่งก็คือธาตุหมู่  B ทั้งหมด  ประกอบด้วยหมู่ IB – VIIIB  รวมทั้ง อินเนอร์แทรนซิชัน  ได้แก่  กลุ่มแลนทาไนด์  และกลุ่มแอกทิไนด์
ธาตุแทรนซิชัน  เป็นธาตุที่ใช้อิเล็กตรอนในระดับพลังงานย่อย ในการเกิดพันธะ   ยกเว้นธาตุหมู่  2B  ที่ใช้อิเล็กตรอนในระดับพลังงานย่อย  s  ในการเกิดพันธะ
สมบัติของธาตุ

1.โลหะทรานซิชันทุกธาตุจะเป็นโลหะ แต่มีความเป็นโลหะน้อยกว่าธาตุหมู่ IA และ IIA

2.มีสถานะเป็นของแข็งที่อุณหภูมิห้อง ยกเว้นปรอทที่เป็นของเหลว

3.มีจุดหลอมเหลว จุดเดือด และความหนาแน่นสูง

4.นำไฟฟ้าได้ดี ซึ่งในโลหะทรานซิชัน ธาตุที่นำไฟฟ้าได้ดีที่สุดคือ เงิน (คาบ 5) และรองลงมาคือ ทอง (คาบ 6)

5.นำความร้อนได้ดี

6.ธาตุทรานซิชันทั้งหมดมีเวเลนซ์อิเล็กตรอนเท่ากับ 2 ยกเว้นธาตุโครเมียม และทองแดง ที่มีเวเลนซ์อิเล็กตรอนเป็น 1

7.สารประกอบของธาตุเหล่านี้จะมีสีสัน

8.มีพลังงานไอออไนเซชันลำดับที่ 1 และอิเล็กโทรเนกาติวิตีมาก

9.ขนาดอะตอม จะมีขนาดไม่แตกต่างกันมากโดยที่

ในคาบเดียวกันจะเล็กจากซ้ายไปขวา

ในหมู่เดียวกันจะใหญ่จากบนลงล่าง

10.ธาตุเหล่านี้มีหลายออกซิเดชั่นสเตตส์ (oxidation states)

11.ธาตุเหล่านี้เป็นตัวเร่งปฏิกิริยา (catalysts) ที่ดี

12.ธาตุเหล่านี้มีสีฟ้า-เงินที่อุณหภูมิห้อง (ยกเว้นทองคำและทองแดง)

13.สารประกอบของธาตุเหล่านี้สามารถจำแนกโดยการวิเคราะห์ผลึก



2.6 ธาตุกัมมันตรังสี

กัมมันตภาพรังสี

เป็นปรากฏการณ์ที่เกิดกับไอโซโทปกัมมันตรังสีเพราะนิวเคลียสมีพลังงานสูงมากและไม่เสถียรจึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสีแอลฟา(α) บีตา(β) และแกมมา γ 


สมบัติของรังสีบางชนิด



การสลายตัวของไอโซโทปกัมมันตรังสี 

    การแผ่รังสีแอลฟา ส่วนใหญ่เกิดกับนิวเคลียสที่มีเลขอะตอมสูงกว่า 83 และมีจำนวนนิวตรอนต่อโปรตอนในจำนวนที่ไม่เหมาะสม 

    การแผ่รังสีบีตา เกิดกับนิวเคลียสที่มีจำนวนนิวตรอนมากกว่าโปรตอนมาก นิวตรอนในนิวเคลียสจะเปลี่ยนไปเป็นโปรตอนและอิเล็กตรอน โดยจะออกมาในรูปของรังสีบีตาและนิวเคลียสใหม่จะมีเลขอะตอมเพิ่มมาอีก 1 โดยที่เลขมวลยังเท่าเดิม

    การแผ่รังสีแกมมา เกิดกับไอโซโทปกัมมันตรังสีที่มีพลังงานสูงมาก หรือไอโซโทปที่สลายตัวให้รังสีแอลฟาหรือบีตา แต่นิวเคลียสที่เกิดใหม่ยังไม่เสถียรเพราะมีพลังงานสูงจึงเกิดการเปลี่ยนแปลงในนิวเคลียสให้มีพลังงานต่ำลงโดยปล่อยออกมาในรูปรังสีแกมมา


     อันตรายจากไอโซโทปกัมมันตรังสี

กิจวัตรต่างๆในชีวิตประจำวันของมนุษย์มีโอกาสได้รับรังสีจากไอโซโทปรังสีเข้าสู่ร่ากายอยู่แล้ว นอกจากนี้ยังได้รับรังสีคอสมิกอีกด้วย โดยรังสีต่างๆเหล่านี้มีแหล่งกำเนิดมาจากธรรมชาตินอกจากนั้นบางอย่างก็เป็นรังสีที่มนุษย์เป็นผู้สร้างขึ้นมา เช่น รังสีจากเครื่องเอกซ์เรย์

    ปริมาณรังสีที่มนุษย์ได้รับโดยประมาณในแต่ละวัน 
รังสีคอสมิก  12%
เครื่องมือแพทย์  17%
อากาศ  40%
อาหารและเครื่องดื่ม  15% 
หินและดิน  15%
อื่นๆ  1%

สำหรับหน่วยงานที่เกี่ยวข้องกับรังสีจะต้องแสดงสัญลักษณ์รังสีลงบนฉลากของภาชนะหรือเครื่องมือรวมทั้งบริเวณใกล้เคียง เพื่อให้ผู้พบเห็นระมัดระวัง


ครึ่งชีวิตของไอโซโทปกัมมันตรังสี

     ครึ่งชีวิต ใช้สัญลักษณ์ t1/2 หมายถึง ระยะเวลาที่นิวเคลียสของไอโซโทปกัมมันตรังสีสลายตัวจนเหลือครึ่งนึของปริมาณเดิม




ปฏิกิริยานิวเคลียร์

     ปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของไอโซโทปกัมมันตรังสี อาจเกิดจากการแตกตัวหรือการรวมตัวของนิวเคลียสอะตอมที่มีขนาดใหญ่และเล็กกว่าได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่




     ปฏิกิริยาที่นิวเคลียสของไอโซโทปของธาตุหนักแตกออกเป็นไอโซโทปธาตุที่เบากว่า เรียกว่า ฟิชชัน และถ้าเกิดฟิชชันต่อไปเรื่อยๆก็จะเรียกว่าปฏิกิริยาลูกโซ่ และในกรณีที่ไอโซโทปธาตุเบารวมตัวกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่าเดิมมากเรียกว่า ฟิวชัน

เทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี

ด้านธรณีวิทยา  ใช้ C-14 หาอายุวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ

ด้านการแพทย์ ใช้ศึกษาความผิดปกติของอวัยวะต่างๆในร่างกาย เช่น ให้คนไข้ดื่มสารละลาย I-131 เพื่อดูความผิดปกติของต่อมไทรอยด์ ใช้ I-132 ดูสภาพสมอง ฉีด Na-24 เพื่อตรวจดูระบบไหลเวียนของเลือด

ด้านเกษตรกรรม ใช้ติดตามระยะเวลาการหมุนเวียนแร่ธาตุในพืชหรือจำนวนแร่ธาตุที่พืชสะสมไว้ที่ใบ

ด้านอุสาหกรรม ใช้ไอโซโทปกัมมันตรังสีกับงานหลายอย่าง เช่น ใช้ตรวจหารอยตำหนิหรือรอยรั่วของท่อขนส่งของเหลว ใช้ทำให้อัญมณีสวย ใช้ในการเก็บถนอมอาหาร ฯลฯ

2.7 การนำธาตุไปใช้ประโยชน์และผลกระทบต่อสิ่งมีชีวิต

   ประโยชน์ของธาตุ 

ธาตุโลหะ นำความร้อนและนำไฟฟ้าได้ดี นิยมนำมาทำเป็นอุปกรณ์ไฟฟ้า

ธาตุกึ่งโลหะ มีสมบัติก้ำกึ่งระหว่างโลหะและอโลหะ นำไฟฟ้าได้ไม่ดี นิยมนำมาทำเป็นสารกึ่งตัวนำ ซึ่งมีสมบัติในการนำไฟฟ้าอยู่ระหว่างตัวนำและฉนวนเพื่อใช้เป็นวัสดุทำอุปกรณ์อิเล็กทรอนิกส์ต่างๆ

ธาตุหมู่ 18 หรือ VIIA เป็นธาตุเฉื่อยต่อการเกิดปฏิกิริยาจึงนำมาใช้ประโยชน์ตามสมบัติของแก๊สมีสกุล

ธาตุที่มีไอโซโทปกัมมันตรังสี สามารถนำมาใช้ประโยชน์ได้หลากหลายดังที่กล่าวไปในหัวข้อ 2.6.6 แม้ธาตุอยู่ในกลุ่มเดียวกันจะมีสมบัติคล้ายกัน แต่ธาตุทุกชนิดยังมีสมบัติต่างกัน ดังนั้นการนำไปใช้ประโยชน์จึงมีความจำเพาะต่างกัน 

ผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อม 
  ธาตุบางชนิดส่งผลกระทบต่อสิ่งมีชีวิตและสิ่งแวดล้อม เช่น เมื่อตะกั่วเข้าสู่ร่างกายจะทำให้มีอาการอ่อนเพลีย ปวดท้อง ท้องอืด เบื่ออาหาร ปวดกล้ามเนื้อ ปวดกระดูกและข้อ ความดันโลหิตสูง โลหิตจาง ความจำเสื่อม ภูมิต้านทานลดลงและขัดขวางการทำงานของเอนไซม์ในร่างกาย 
  ธาตุบางชนิดแม้ไม่ได้มีสมบัติเป็นพิษร้ายแรงแต่การนำมาใช้ไม่ถูกวิธีก็ส่งผลให้เกิดความเสียหายต่อชีวิตและทรัพย์สินได้เช่นกัน


https://boonmawong.wordpress.com/

http://class408mst.blogspot.com/
















ไม่มีความคิดเห็น:

แสดงความคิดเห็น

 เฉลยแบบฝึกหัดบทที่ 3  1.  ก 2.  ก   3.  ค 4.  ง 5.  ค 6.  ก 7.  ก 8 .  ง 9 .  ค 10 .  ค 11.  ค 12.  ข 13.  ก 14.  ข 15.  ค 16.  ค 17.  ก 18...